ESG & Industry Updates

Transportation DeCarbonization Blueprint: Light Duty Vehicles

Posted by Kelly Burke on Jan 20, 2023 10:41:32 AM

The US National Blueprint for Transportation Decarbonization splits the Transportation sector into seven categories of focus: Light-Duty Vehicles, Medium- and Heavy-Duty Vehicles, Off-Road, Rail, Maritime, Aviation, and Pipelines. We will discuss the major items involved in each of these, from largest % of carbon share to least, starting with Light Duty Vehicles.

Light-Duty Vehicles produce 49% of current transportation emissions (of note, for the purposes of the Blueprint “current” refers to 2019 levels due to the pandemic and related shutdowns making 2020 & 2021 data unreliable/useless).

The United States has over 280 million light duty vehicles on the road and these vehicles:

  • Account for 75% of passenger transport miles,
  • Account for 50% of total transportation energy use and emissions
  • Consume over 120 billion gallons of gasoline annually
  • Emit over 1,000 MMT CO2 annually

As we are all aware, Light Duty Vehicles (LDV) in the US have been subject to increasingly strict emissions requirements over the past few decades, and we have seen a massive increase in the availability of electric vehicles (EV) as well. To put specific numbers on it, in the past 15 years, LDVs have seen a 30% improvement in fuel economy (some of the ultimate impact of this however was mitigated by the trend toward larger, more fuel intensive passenger vehicles during that time period). EV have seen an explosion in popularity, it used to be you’d see a Prius or Volt here or there, now you would be hard pressed to drive to Boston without getting stuck behind a Tesla or two. Again, in terms of specific numbers, EV sales reached over half a million vehicles sold, bringing the total to 4.5% of market share in 2021 (18% in California!).

One of the major focuses of the blueprint in the LDV sector is the promotion of EV and zero emission vehicles, with an obvious preference for EV adoption. In tandem with EV adoption, there is a necessary push for charging infrastructure to make them a more feasible option for consumers. The goal is to have 50% new light duty EV sales by 2030, which would be a major step down the road to the ultimate goal of 100% EV adoption.

There is also an included focus on “Funding Research and Innovation” in this section of the Blueprint, which largely functions as an acknowledgement that we aren’t quite there on battery life and battery cost. Part of the legislative language in the Bipartisan Infrastructure Bill (BIL) and Inflation Reduction Act (IRA) included large investments toward the development of a reliable EV manufacturing supply chain. The legislation also references research and development aimed at achieving price parity between EV and traditional combustion engine vehicles to make them more accessible to the average consumer in terms of price, practicality, and maintenance costs over time. Studies indicate that battery cost has dropped 90% from 2010 to 2020, and projections indicate that when the price reaches $100/kwh the MSRP on EV will hit parity with combustion engine vehicles. The legislation mentioned above intends to fund the research on battery technology to make those price levels reality.

So that is the overview, the major takeaways being that the major goals for this section are:

  • “Achieve 50% of new vehicle sales being zero-emission by 2030, supporting a pathway for full adoption, and ensure that new internal combustion engines are as efficient as possible.”
  • “Deploy 500,000 EV chargers by 2030”
  • “Ensure 100% of Federal Fleet procurement be zero-emission by 2027”

Obviously, for the purposes of energy suppliers, particularly at the consumer level, the growth of EV adoption implies a longer-term shift in the mix of gasoline demand and delivery, especially to stations and municipalities. Actual changes in market share of EV and zero-emission vehicles is something to watch.

Next up, medium- and heavy-duty trucks and buses.

Stay Tuned!

 

Read More

Topics: EV Charger, EPA, carbon emissions, emissons, Biden Administration, ev, dot, decarbonization

Inflation Reduction Act - Relevant Industry Item Snapshot

Posted by Kelly Burke on Aug 22, 2022 12:43:46 PM

 

Last week President Biden signed into law the “Inflation Reduction Act”, which is essentially a slimmed down adjunct bill to the “Build Back Better Act”. As the name implies, ,the goal would be to combat the crippling inflation facing the country currently – although most analysis by both CBO and federal groups has not concluded that would be the case in the long term. We shall see.

In the meantime, we pulled together some of the major industry-relevant items to keep an eye on

Federal analysis of the Inflation Reduction Act projects that the law will help cut United States emissions to 40% lower than 2005 levels by 2030. This aligns with the longer term goal of a net zero emission economy by 2050.

$370 billion dollars of the $740 billion dollars contained in the Inflation Reduction Act are directed toward addressing climate change, (including the potential cost of tax credits)

Among the points focused on are:

  • Removing the per-manufacturer cap on tax credits per unit sold of Electric Vehicles, which is meant to stimulate growth in EV sales and usage. However, there is also a provision that EV batteries have to be sourced 40% from domestic sources, which will be a major hurdle for some companies.
  • $60 billion in production tax credits for companies involved in domestic clean energy production, including multiple incentives for nuclear production to the tune of $30 billion
  • EPA granted the authority to fine oil & gas companies for emitting excessive methane emissions. This is a first of its kind provision that would kick off in 2024 and fine $900 per metric ton initially, and increase annually thereafter.
  • $9 billion dollars toward promotion of consumer adoption of renewable energy for residential use in the form of solar, heat pumps and electric systems instead of natural gas.
  • $60 billion for Environmental Justice programs, in the form of both renewable energy conversions and pollution, drought, and flooding remediation for impacted communities.
  • $51 billion for renewable energy production
  • $51 billion for clean energy investment
  • $3.2 billion for carbon capture technology
  • $27 billion for Greenhouse Gas Reduction Fund (a financing agent for startups focused on decarbonization, essentially)

Of note is that most of the federal analysis seems to conclude that the emission reductions projected would require a heavy reliance on Carbon Capture & Store technology, which at the moment is a complicated and cost prohibitive solution in many situations.

As with any massive piece of legislation, its hard to predict how different provisions will impact industry segments until the rubber hits the road as they say. Definitely something to keep an eye on as it unfolds.

Stay Tuned!

Read More

Topics: carbon emissions, Biden Administration, environmental justice, inflation, ev, Inflation Reduction Act, Carbon Capture

Solid State Batteries Could Change the EV Game

Posted by Kelly Burke on Aug 3, 2022 2:01:43 PM

shutterstock_1614773872

We're all familiar with both the rise of electric vehicles, and the lingering concerns some have regarding their adoption - namely, driving range, time to recharge, and battery lifetime limits. It's long been assumed that solid state batteries could be the key to solving all of these issues at once, while simultaneously enhancing safety but until recently it looked like it would be quite some time before the technology got to a point where it was scalable and practical. We may have reached that point sooner than expected, however. 

So what even are solid state batteries? . Right now, most EV currently use the familiar lithium ion battery, which uses a liquid or gel electrolyte solution between positive and negative electrodes to both store and release charge. Solid state batteries instead use a solid material for electrons to pass through (ceramic, glass, etc). The lack of liquid/gel allows for holding a  larger amount energy per unit of mass, which means solid state batteries have the potential to increase range. Because of the decreased overall mass (they're roughly half the size of a lithium ion battery) auto manufacturers can allot nearly twice as many batteries to the reserved battery holding areas within the standard EV setup. Additionally, the lack of liquid means more temperature stability for the battery, and removes much of the need for added cooling mechanisms currently in place to avoid the risk of fire & overheating that is present in standard batteries. 

In terms of battery lifetime and the cost to update or replace EV batteries, some manufacturers are estimating that the prototype models they are currently running will be able to stand up to 1000 charges, and with double the battery capacity, the math works out to newer solid state running EVs potentially running a little over half a million miles prior to needing battery replacement. 

The other main highlight is that an additional long standing issue with the move to EV and general electrification has been the impracticality of lithium ion powered heavy freight, long haul trucking, aircraft, or grid level energy storage. By changing the battery variable, that equation may become solvable in time. 

We did an article for Oil & Energy magazine this issue to discuss Solid State Batteries' potential in the EV market, and specifically what Solid Power, one of the industry tech leaders, is doing. You can read that article in its entirety here: Solid State Batteries are Game Changers

For more by way of background on EV batteries and whats going on with that technology - the video below does an excellent job explaining how Lithium, Hydrogen, and Solid State batteries work, and what the benefits and limitations are of each: 

 

Read More

Topics: climate change, electric vehicles, battery, ev, solid state battery

Recent Posts

Posts by Topic

see all